
introduce the Oz axis so that ~(q) = 0 for ~ = ~, then c = 0 in (2.1). We assume that 
l~'(q~) I is small; then the linearized equation (2.1) has the following solution for g ~ O: 

[Kl(t) is the modified Bessel function]. The constant Co is determined easily by the value 
of the wetting angle at the point of fluid contact with the wall. 
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NONLINEAR CRITICAL LAYER AND FORMATION OF LINEAR VORTICES 

WITH REACTION OF WAVES IN SHEAR FLOWS 

V. P. Reutov UDC 532.526 

Recently in hydromechanics there has been a considerable increase in interest in the 
problem of transition from laminar to turbulent flow [i-3]. Of considerable importance for 
explaining processes occurring during transition to turbulence in shear flows is analysis 
of the nonlinear structures occurring as a result of the development of hydrodynamic insta- 
bility. Experiments show that in boundary flows such as a boundary layer and Poiseuille 
flow, occurrence of turbulence is connected with formas of A-vortices characterized by 
a considerable linear (in relation to flow direction) component of vorticity [4-9]. In [i0] 
attention was drawn to the related connection of these vortices with large-scale bounded 
structures observed in the region near the wall of developed turbulent flow. 

The theory of Benney and Lin [ii, 12] connects oscillation of linear vorticity in trans- 
itional flow with an increase in it of pairs of inclined (three-dimensional) waves having 
the same phase velocity and linear components of wave vectors. The instantaneous profile 
of the transverse velocity determined in [12] within the framework of linear approximation 
demonstrates two reversals of velocity for the period of the wave, whereas in experiments 
[5, i0] sequences of profiles are observed with one reversal which corresponds to passage 
through a stationary observation point for one vortex formation in the period of the wave. 
In this work a study is made of essentially nonlinear vortex structures occurring in a criti- 
cal layer (CL) of laminar flow with resonance reaction of two-dimensional and inclined waves 
increasing in it. Analysis is built up within the framework of an asymptotic approach rest- 

Gor'kii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 107-115, September-October, 1987. Original article submitted June 16, 1986. 

742 0021-8944/87/2805-0742512.50 �9 1988 Plenum Publishing Corporation 



ing on use of the smallness of CL thickness. In this way nonlinearity may only be consider- 
able within the limits for the thin CL. At the present time main attention is being devoted 
to studying two-dimensional CL (see, e.g., [13-15]). The problem of the CL structure in 
the case of a single inclined wave is also reduced to a two-dimensional problem [13]. Sug- 
gested below is an explanation of the mechanism for forming A-vortices based on analyzing 
the dynamics of a three-dimensional nonlinear CL in ideal flow. 

The mechanism for occurrence of a wave triplet, introduced heuristically by Benney and 
Lin, is explained in [16]. According to [16], generation of inclined waves is due to their 
resonance reaction with the second harmonic of a two-dimensional wave which is in synchron- 
ism with this wave. The diagram combining wave vectors with this process is shown in Fig. 
!a (k0 and k1,~ are wave vectors for two-dimensional and inclined waves, respectively). In 
the case of identical slopes between vectors k1.~ and k~ (symmetrical triplet) from the syn- 
chronism condition it follows that there is equality of frequencies and wave phase veloci- 
ties ko,1,~ (it is achieved by selecting the angle between wave vectors for two-dimensional 
and inclined waves). A situation often occurs in an experiment when the natural wave for 
flow with wave vector 2k0 attenuates strongly. With this condition synchronism for genera- 
tion of the second harmonic is disturbed and it should be considered as an induced wave. 
A four-wave process arises which is described in third-order theory for perturbation of wave 
amplitudes. Since the amplitude of the second harmonic in this case is small, pulsations 
of velocity and pressure in the flow are determined approximately by the wave triplet 
k2, all waves of which have identical frequencies. The possibility of generating pairs of 
inclined waves with their direct resonance reaction with a two-dimensional wave was con- 
sidered theoretically in [17]. 

With s~mmetricai location of wave vectors kI.2 relative to k0 the frequencies of in- 
clined waves equal half the frequency of the two-dimensional wave. Combination of wave vec- 
tors with this "subharmonic" reaction is shown in Fig. lb. Experimental proof of realization 
for subharmonic reaction in the boundary layer is given in [18]. In [19] "triharmonic" self- 
sustained regimes were obtained corresponding to saturated explosive instability of wave 
triplets in a plane channel. The processes mentioned are basic with classical and subhar- 
monic regimes for failure of laminar flow in the boundary layer [9, i8]. A classical (single- 
frequency) regime normally arises with large values of two-dimensional wave amplitude, which 
may be explained by the lower effectiveness of four-wave reaction compared with three-wave 
reaction witih low wave amplitudes. 

With realization in a flow of single-frequency and subharmonic reaction of waves, all 
of them have the same phase velocity, and in the flow velocity profile U(y) one (common for 
all waves) resonance point y = Yc [U (Yc) = c] arises. Considered below is evolution of a CL 
occurring in ideal flow in the vicinity of section y = Yc" Approximation of ideal flow makes 
it possible to draw important qualitative conclusions relating to processes with presence 
of low viscosity, and in addition it is of interest in view of use with numerical modeling 
of flows [20]. Amplitudes for all waves are assumed to be constant. Consideration of the 
slowly varying dependence of amplitude on time is not reflected in the form of equations 
for the CL itself (see similarly in [14]), also necessary in describing reverse reaction 
of CL in wawms, which in this case is not considered. With finite viscosity and a change 
in wave amplitude in time it is possible to introduce hierarchy for CL thickness [14]. The 
case of a nonlinear CL in ideal flow corresponds to predominance of nonlinear CL thickness. 
It is noted that approximation of a thin CL is correct with weak instability typical mainly 
for flow near walls. In flows with strong instability (e.g., in a shear layer) in the linear 
stage of development of instability CL thickness, calculated by the equation for a thin CL 
[14], appears comparable with the scale of shear velocity in primary flow. 

a b 

i k~ ~I 

Fig. 1 
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I. We use a dimensionless form of writing hydrodynamic equations for an ideal incom- 
pressible liquid (normalizing introduced in a normal form for stability theory). Axes x 
and z of a Cartesian coordinate system are directed along and across the flow, and axis y 
is directed along the normal to the flow plane. By representing the linear component of 
the velocity vector v in the form v~ = U(y) + vt, we obtain 

+~ +~'+, dU @ - 07, s ~ _  (1.1) 
o-T + U ~  + v_+ ~ + %~ = - -  v i  ~ - -  v+ ~ - -  va ~ = Ft,: 

&,~ Or+ a_._p = ~ 0% &:o av+ Y 

Ov a Ov~ Op ~ Ov a 0% Ov~ __F 
at ~- U - ~ z  + a---~ - - -  v ~ - ~  - -  v~--~ - v~ ~ - =  ~, 

O~ Ov 2 Ov 3 
o--; + W + ~ = o  

(p is dimensionless pressure). We introduce small parameter r characterizingthe serial 
value of oscillation amplitude, and we shall build up solution (i.i) in the form of an expan- 
sion in powers of E: 

~ (~) 
vt=~ 'v?)+em~[  2) + . . . .  v j=evJ  n + e ~  + . . .  ( ] =  2,3), ( 1 . 2 )  

p = epO) + s2p(2) + ... 

For nonlinear terms in (I.i) we obtain, respectively, Fj = eFj (z) + E2Fj (2) + .... In view 
of Squire's transform the search for y-components of velocity in an inclined wave is reduced 
to solving the similar problem for a two-dimensional wave with wave number =0 = ~2 + 62 
(= and $ are wave vector components along axes x and z). By prescribing to a first approxi- 
mation one of the wave triplets shown in Fig. i, we have 

v~") = E (A+% + B+~b) e m + c.c., ( i. 3 ) 
~,$ 

where 0 = ~(x - ct) + 6z; @a and @b are Tollmien functions [13] forming a fundamental set of 
characteristic functions of the Rayleigh equation for a two-dimensional wave with wave num- 
ber ~0 and phase velocity c; Ai(~, 8) and B• 8) are constants; summing is carried out for 
values of ~ and ~ relating to one of the wave triplets. Indices + and - relate to regions 
Y > Yc and y < Yc, found on different sides of the resonance point at which derivatives with 
respect to y undergo a break. We shall designate by symbol A amplitudes of Fourier harmonics 
for variables; vi = <viexp(-iO)>, etc. (<...> are average for space-time oscillations). 
By substituting ~1.3) In (1.2), equating coefficients with the same powers of e, and express- 
ing amplitudes p(s (s and v3 (s in terms of v2 (s we find that 

dy 

+_+++ [ , c _  1 
tO~ D 

Fa -- W v ,  = - ~%~ ~ + ~--c-~_+v~ ) ~ - ~ Fl 
�9 + ~ (U-- ~) 

(1.4) 

where primes indicate derivatives of U with respect to y and for brevity the upper index 
(s s = i, 2, 3, ... is omitted for all amplitudes. The sequence of transformations in 
changing from (i.i) to (1.4) is easily reconstructed from the form of combinations of 9j in 
the right-hand parts of (1.4). Since Fj (I) ~ 0, with s = 1 from (1.4) the results of 
linear theory follow. By using relationship (1.4) for harmonics with ~ ~ 0 and expressions 
emerging directly from (i.i) for components with ~ = 0, it is possible to determine the terms 
of expansion (1.2) in explicit form. 

It can be seen from (1.3) and (1.4) that close to the resonance point (y - Yc + 0) it 
is possible to consider nonlinearity within the scope of the normal method of disturbances 
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with respect to e.  A nonlinear CL with thickness ~ez/a arises in the flow. By determining 
asymptotically the first two terms in expansion (1.2) with y - Yc + 0 and changing over in 
them to a variable CL, Y = (y - yc)/~ ~/~, we obtain an expansion for harmonic amplitudes 
with Y + • (external expansions for CL): 

---- eBp+ q- e ~ In et/~C• q- O(e~), (1 .5)  

v ~ = ~  - - ~ B ~ I + O ( t / Y  ~) +O(e~/~lnO/~), 

v~=~/~[  ~" B ] O (8 in 8~/~), ~• + 0 (i/Y ~) + 

~_ o~U,cy B~• -~- O(t /Y a) + 0(81n81/~). 

Here Bp• = (i~Uc'/~0~)B• is complex amplitude for pressure in the wave (~, ~) with y + Yc • 
0 in units of ~; C+ are constants which are expressed in terms of the value Bp+ with differ- 
ent ~ and ~. Estimation of the rest of the terms in the main part of expanszon (1.5) for 
velocity components are given for the case of a subharmonic triplet. 

In order to describe a nonlinear CL we change over into (i.i) to variables Y, ~ = x - 
ct, and "slowly varying" time z = gz/~t ($ is coordinate downward for flow in the reckoning 
system connected with waves; normalizing of time is introduced from the condition of equal- 
ity in the sequence of values for nonlinear and nonsteady terms in equations for the CL). 
By using an expansion for primary flow velocity in the reckoning system for waves U - c = 
e~/ZUc'Y + ~/~Uc"Y ~ + ... and taking notice of (1.5), we build up a solution for the equa- 
tions obtained 

p = eP(~ + e 2 In el/2P O) + e~P (2) + .... ( 1 , 6 )  
~3/2Tf(2) U2 : $V(20) ~ $3/2 In gl/2V(21) + o r 2 + . . . .  

~ = ~.,~0> + ~ ~n ~ / ~ "  + ~ P  + . . . .  

U 8 : e l / 2 V ~  O) + 8 In F_.,1/2V(31) ~- EV (2) ~ -  . . .  

I t i s  e a s y  to  be c e r t a i n  t h a t  v a r i a b l e  p (0 )  s a t i s f i e s  t h e  e q u a t i o n  8P(~  = 0, and c o n s e -  
q u e n t l y  i t  ,does n o t  depend on Y. From t h e  c o n d i t i o n  f o r  combin ing  ( 1 . 6 )  w i t h  e x t e r n a l  ex-  
p a n s i o n s  ( f o r  ha rmon ic  a m p l i t u d e s )  we o b t a i n  Bp+(a,  ~) = Bp_(~,  13) ~ Bp. Th i s  r u l e  a u t o -  
m a t i c a l l y  p r o v i d e s  c o m b i n a t i o n  f o r  v a r i a b l e  p ( 1 ) ,  which  a l s o  s a t i s f i e s  t h e  e q u a t i o n  8 P ( 1 ) /  
~Y = 0. The e x p r e s s i o n  f o r  p (0 )  has  t h e  form 

p(0) _-- ~ Bp (~, ~) e i~t+i~~ + e.e. ~,1~ (1.7) 
Thus, the pressure field in a thin CL is determined by wave disturbances propagating in the 
main part of the flow. The set of equations connecting the main terms of expansion (1.6) 
takes the form 

0~?> ~?>) 0~(?) v~o( U, 0~?>) .,(~ ~ 0v(0> (1.8) 
or + (U'~Y + - - T  + . c + - T 7 - - ]  + V~ oz = o~ ' 

or?> Vo>~ ov?) . Vco> or?> ~(o) ov<.O> ov~o, 

0~(?> ov(:> ov(~ ~ 
o-T- + -TF - +  oz . . . . .  O. 

F o l l o w i n g  t h e  g e n e r a l  scheme f o r  t h e  method o f  c o m b i n e d  a s y m p t o t i c  e x p a n s i o n s ,  i t  i s  n e c e s -  
s a r y  t o  f i n d  s o l u t i o n  o f  ( 1 . 8 )  which  combines  w i t h  t h e  main p a r t  o f  e x p a n s i o n  ( 1 . 5 )  w i t h  
Y + _+~. It is possible to see that this solution is simultaneously a solution for the boun- 
dary problem with boundary conditions 71(~ + 0, V3(~ § 0, Vi(~ + Vc(~ where Vc (~ is 
oscillations of the y component of velocity Vl,~ ~ in a flow with velocity Uc'Y in an approxi- 
matxon of iznear theory (Vc (~ coincides with limit vi(I) with y + Yc)" In order to plot 
asymptotics for solution of this boundary problem with large IYI it is assumed that Y = q/~ 
and we use disturbance theory for small parameter D << I. With an increase from variable 

to Y series of disturbance theory with respect to parameter D give an expansion with re- 
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spect to I/Y contained in the main part of (1.5). Statement of the boundary problem for 
(1.8) makes it possible to talk about resonance excitation and development of vortex disturb- 
ances in a uniformly swirling incompressible gas of particles not reacting with each other. 

After introducing total linear flow velocity in the CL VI (~ = Uc'Y + VI(~ and chang- 
ing over to Lagrangian variables, the first two equations of set (1.8) change over to a 
closed set of equations for the "horizontal" (with components in the flow plane) component 
of individual particle movement: 

dr('~ ~176 d~-- V~~ oP(o) d= V(a o) ( 1 . 9 )  
dT, a~ ' d'~ d'~ Oz ' d'~ " 

In  v iew o f  t h e  a b s e n c e  o f  a d e p e n d e n c e  f o r  p r e s s u r e  f i e l d  on Y and a b s e n c e  o f  s e l f - c o n -  
f o r m i n g  p r e s s u r e ,  h o r i z o n t a l  movement  o f  l i q u i d  p a r t i c l e s  i s  au tonomous  and s i m i l a r  t o  move-  
ment  o f  a s e t  o f  m a t e r i a l  p o i n t s  i n  t h e  p o t e n t i a l  p ( 0 ) ( ~ ,  z ) .  The n o r m a l  v e l o c i t y  componen t  
i n  t h e  CL i s  d e t e r m i n e d  f rom t h e  c o n t i n u i t y  e q u a t i o n  in  s e t  ( 1 . 8 ) .  

By u s i n g  ( 1 . 6 )  i t  i s  p o s s i b l e  t o  w r i t e  e x p a n s i o n s  f o r  v o r t i c i t y ,  ~ , ~  c u r l V :  ~ = ~ 1 ( ~  + 
El/2 in El/2 s (I) + .'', m~ = ~3 (~ + E1/21nEl[2m3(1) + ''', ~2 %~,i/~02k~ + EInE i/2m2 (1) + 
.... Inthiswaym1(~ aV3(~ cos(~ =-SVI(~ m2(~ = 8V1k~ 8V3(~ i.e., 
the connection between tangents to the flow plane with velocity and vorticity components 
appears to be the same as for a unidimensional vortex layer. From the conservation rule 
vortices should link vorticity distribution with the relative change in material element 
length 61, lying on the vortex line [21]: 

(0 (t) 61 ('~) 
I ,o (%)  I = I a (%) l ( 1 .10  ) 

(~0 is instant for the start of movement). Taking account of the expansion for component 
and the coordinates of individual particles from (I.i0) an approximate relationship emerges 

o ( ~  f i l ~ 3 ( z )  
1,3 __ , ( 1 . 1 1 )  

~)(%) % (~o) ' 

where ~) (To) V ~(o)z• ~ 1  . = I T a F=%,S/h(T0)= V(610~+(61~)~I~=%" By solving (1.9) for particles found 
on one vortex line it is possible to find the change in projection of its material elements 
on plane 6, z, and by means of (I.ii) to erect the distribution of horizontal vorticity com- 
ponents along this vortex line at any instant of time T. 

In the two-dimensional case (8/8z = 0) the boundary problem for a CL has a trivial solu- 
tion coinciding with that known in two-dimensional CL theory [13, 14]: V2(~ = Vc (~ 
Vl (~ = Uc'Y , Vs(~ = 0(~s (~ = -Uc', ~x,2 (~ = 0). With this current line flow in the 
CL has a "cat's eye" shape. The nonlinear problem for one inclined wave is also reduced 
to the two-dimensional case (similar to [13]). With presence of a pair of inclined waves 
disturbances of vorticity ~l,a are comparable with the vorticity for primary flow, i.e., 
U c' and linear velocity in the reckoning system connected with waves do not coincide with 
Uc'Y. In addition, in the case of a nonlinear CL the first two equations of set (1.8) deter- 
mine the product of divergence for horizontal velocity differing from zero: d/dt (SVx(~ 
8E + 8Vo(~ ~ 0 In accordance with the continuity equation this leads to a change in 
velocit; V2 (~ across the CL. An increase in deviation of V2 (~ from Vc (~ on approaching 
the resonance point is also detected in expansions (1.5). 

In order to describe the reverse effect of vorticity disturbances in a CL on evolution 
of wave amplitude it is necessary to find the jump in coefficient A in (1.3), which leads 
to the problem of combining expansions for v 2 of the order s Movement of the main se- 
quence with disturbances of vorticity in CL O(i) does not give jumps in a single one of the 
velocity components with transition through the CL, and consequently there are no jumps in 
Reynolds wave stresses governing the evolution of wave amplitudes. Therefore, the rate of 
change in amplitude will be of the same order with respect to e, as in the case one two- 
dimensional or one inclined wave. 

2. We consider evolution of vortex lines in a linear CL with presence in the stream 
of one of the wave triplets shown in Fig. i. We shall assume that at initial instant T~ = 
0 disturbances of horizontal velocity in the resonance region IYI ~ 1 are absent: VI (~ 
Uc'Y, Va(~ = 0. In this way vortex lines governing the field of vorticity ~0 have the form 
of straight lines drawn out across the flow, and in expression (i,i) we should place 
l~(~ = U c' and [61(0)I = 1613(0)I. Pressure distribution in the CL is presented as 
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p(0) = slccs(ag - ~z) + s~cos (aS + 8z) + s o cos (K~$ + a), where sj = 12Bp(aj, ij)l are wave 

amplitudes, A is phase shift (phases of inclined waves may always be excluded by changing 
the start of reading along axes ~ and z); K = 1 corresponds to a single-frequency triplet, 

K = 2 corresponds to a subharmonic triplet (see Fig. la, b). For solution of system (1.9) 

we introduce normalized variables. 

"~N = ( f ~ / 2 ~ ) T ,  ~ x  = cr z,v = ~zz l2~ ,  

U' dV(O) rr' n~z(o) 
~ c i ~ W ~ ~ c ~ , ~  8 

(2.1) 

where ~ = ~/~z + So is a characteristic frequency for small oscillations of entrained par- 
ticles; d = V~-i + s~/U c' is characteristic size of the entrainment region with respect to 
Y, which is found with substitution of V2 (~ by its limiting value Vc (~ By substituting 
(2.1) in (1.9) and discarding index N for variables Tn, in, ZN, we obtain 

d~ du O P 
d-~ = u ,  - ~  = a$ ' 

dz/d~ = w, dw/dT = - -aP/Oz,  

(2.2) 

P(~,  z) = e cos ( 2 ~ )  cos (2~?z) + (i - -  e) cos (2gK$  ~- h) .  

Here ~ = ~/~ is tangent of the slope for oblique waves; e = 2sz/(2s z + So). 

System (2.2) has an energy integral u2/2 + w2/2 + P(g, z) = E. Each line for level 
of potential P = E is the boundary of the entrainment region in plane ~, z for particles 
with energy E (movement is prohibited with P > E). We shall follow particles located with 

= 0 in any vortex line of undisturbed flow: u(0) = Y(0)/d = const, $(0) = const, w(0) = 
0 [z(0) is a parameter]. Any solution of (2.2) with these initial conditions is invariant 
with respect to transforms ~z + ~z + i and ~ § ~ + 1 or relative to double-substitutions 
yz + n - yz, w § -w (n is a whole number), which relates to periodic repeatability of the 
trajectory with respect to $, z and their mirror symmetry relative to lines yz = n - 1/2. 
Therefore, it is sufficient to plot the trajectory of particles found with ~ = 0 within the 
limits of one period with respect to $ and z. The initial position of a vortex line pre- 
scribes nonuniform distribution of particle energy with respect to z. In this way in one 
vortex line there may be "entrained" and "flying" particles completing, respectively, finite 
and infinite movement in flow direction $. 

In this vortex line there will be tension for material elements and rotation of them 
in the flow direction, which according to (i.ii) leads to development of considerable lin- 
ear vorticity. The condition of particle speedup in one vortex line may be obtained by 
analyzing the movement of particles with coordinates ~z(0) = n, n - 1/2, which move in plane 
$, z along straight lines z = const = z(0) (w ~ 0). Boundaries of the entrainment region 
for these ]particles in plane (u2(0), $) are determined by an expression in the form of 
(I/2)u2(0) = max$[P($, z(0))] - P($, z(0)). In the case of a single-frequency triplet (K = 
i) with A = 0, e < 0.5 the reciprocal position of these boundaries is such that particle 
speedup in lines ~z = n, n - 1/2 with any $(0) proceeds with departure to infinity of those 
particles which are in lines yz = n - 1/2. 

Movement of particles in one of these vortex lines is shown in Fig. 2 [~ = i, e = 0.3, 
u(0) = 1.5, curves 1-4 relate to instants of time shifted by At = 0.31]. It can be seen 
that tension for material elements leads to formation of a A-shaped inflection on whose 
slopes considerable linear vorticity arises with opposite signs. With intersection by par- 
ticles of planes of symmetry ~z = n, n - 1/2, in which w = 0, loops occur on vortex lines. 
The condition for impenetrability of these planes is not infringed, since there is a sym- 
metrical original counterflow of particles from adjacent regions, which makes it possible 
to identify intersection of planes of symmetry with elastic reflection of particles falling 
on them. 

Presented in Fig. 3 are ten vortex lines at instant �9 = 0.65, which with T = 0 were 
found in sections $ = 0.i(s - I) (s = i-i0) in one level with respect to Y [u(0) = 1.5]. 
This picture shows that the concentration of linear vorticity occurs as a result of lines 
in which tlhe speedup condition for liquid particles is fulfilled. Sections given in Figs. 
2 and 3 for vortex lines should continue periodically, shifting the origin in the direction 
of axes ~ and yz with a period equal to unity. With A z 0 or e > 0.5 in vortex lines with 
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different ~(0) the heads of inflections may also be found in straight lines ~z = n. To a 
considerable extent experimental data relate to the picture of lines with inflections of 
a single type occurring with A = 0, e < 0.5 [4, 9]. Condition A = 0 may be considered as 
the result of synchronizing two-dimensional and inclined waves with formation of a nonlinear 
vortex structure in the CL. Solutions of (2.2) with A = 0 are invariant relative to substi- 
tutions x + -x, u + -u. Therefore, in vortex lines found with T = 0 beneath the layer of 
conformity [u(0) < 0] A-shaped inflections occur directed against the flow. Both types of 
inflection in vortex lines were also obtained in [20] with direct numerical modeling on ideal 
flow near a wall by means of a system of vortex filaments. 

In the case of a subharmonic triplet (K = 2) the property of periodicity for location 
of trajectories with a subharmonic period is fulfilled by the property of symmetry of a 
checkered type [solutions of (2.2) are invariant to substitutions 7z + 7z + 1/2, ~ + ~ + 
1/2]. Analysis of experimental data given in [18] gives a value A = ~. Movement of par- 
ticles in a section of one vortex line with A = ~ is shown in Fig. 4 [y = i, e = 0.5, u(0) = 
i.I; curves 1-4 correspond to instants shifted by AT = 0.22]. The picture obtained should 
continue periodically, shifting the origin in the direction of axes ~ and 7z with period 
I. In addition, by considering the checkered symmetry in the position of the particle tra- 
jectory, this picture may be continued by shifting the origin along axes $ and 7z by one 
half simultaneously. Thus, for subharmonicinteraction a checkered sequence of A-shaped 
inflections is typical. 

The results obtained for a CL in ideal flow may be connected with the stationary (or 
quasistationary) CL established with reaction of waves in viscous flow. This relationship 
relates to the case of quite large wave amplitudes when the scale of a nonlinear CL exceeds 
the thickness of a linearly viscous CL [14]. Nonuniform tension of material elements for 
vortex lines leads to an increase in vorticity gradients across the CL and entry into play 
of viscous flow forces. It is natural to assume that in a CL a vortex structure occurs quali- 
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tatively similar to nonviscous flow in this stage of its development when viscous terms in 
CL equations are of a single order with nonviscous terms. These ideas are confirmed by the 
results of solving the nonviscous and steady viscous problems for a two-dimensional CL [14, 
15]. 

From the analysis carried out it can be seen that concentration of vorticity in linear 
vortices is due to tension of material elements in vortex lines in a nonuniform pressure 
field across the flow occurring with resonance reaction of a two-dimensional wave with a 
pair of inclined waves. The theory explains certain regularities observed in experiments 
for visualizing flow in the transition region [6-9]. Linear vorticity has opposite signs 
in neighboring slopes of a A-vortex; in the case of a single-frequency wave triplet vor- 
tices are set up successively and it is possible for the head of the vortex to break away 
in the final stage of its development (see Fig. 2); with a subharmonic type of transition 
vortices build up in a checkered sequence and head separation is absent (see Fig. 4). At 
the same time, theory predicts formation of reverse vortices lying below the layer of con- 
formity which are not observed in experiments. Comparison with results in [20] make it pos- 
sible to conclude that development of reverse vortices is a result of using an ideal flow 
model. With wave amplitudes corresponding to formation of a strongly linear CL the region 
of entrained particles expands almost to the walls [15]. It may be assumed that absence 
of reverse vortices is connected with the viscous nature of flow close to the walls. 
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EXPERIMENTAL MODEL OF A TORNADO 

V. G. Makarenko and V. F. Tarasov UDC 532.527+551.515.3 

In this work results are presented for an experimental study of movement of a fluid 
filling a cylindrical vessel moving with constant angular velocity, part of the surface of 
which oscillates in a prescribed way. It has been established that under certain condi- 
tions a system of vortices forms in the fluid. The main properties of these vortices are 
the oscillating nature of fluid movement in them, and the high level of vorticity markedly 
exceeding double the angular velocity of vessel rotation. In arranging experiments consider- 
able use was made of data in [i, 2] where in a linear approximation information is given 
about actual oscillations of a solidly rotating cylindrical column of fluid. It was found 
that the properties of laboratory vortices are similar to those known for natural atmospheric 
vortices, i.e., tornadoes. The analogy established makes it possible to explain numerous 
facts caused by the occurrence of a tornado. 

i. Experiments were carried out in a device whose diagram is given in Fig. i. A trans- 
parent cylindrical vessel i, in which the fluid was placed, rotated with constant angular 
velocity ~. Movement of the initially solidly rotating fluid was disturbed by means of gen- 
erator 2, consisting of a disk, or a ring, or of a disk and a ring. The fluid surface 3 
between disks, rings, and the side surface of the vessel is free. Disks and rings rotate 
together with the vessel, and in the vicinity of the free fluid surface they complete harmon- 
ic vertical oscillations with frequency ~h = m" By this method axisymmetrical inertial 
waves (zero harmonic for the amplitude coordinate) were created in the fluid. A resonance 
regime for wave excitation was used which made it possible to isolate the required mode and 
made it possible to obtain waves of considerable amplitude. In order to provide resonance 
the level of fluid in the vessel was chosen so that with a prescribed oscillation frequency 
for the generator the height of the fluid column equalled a whole number N of half-waves 
for the test mode. The edges of generator disks and rings moved over cylindrical surfaces, 
where vertical velocity v z in the exciting wave, calculated by linear theory [I], returned to 
zero (see Fig. i). 
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Fig. i 
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